We introduce a novel second order family of explicit stabilized Runge-Kutta-Chebyshev methods for advection-diffusion-reaction equations which outperforms existing schemes for relatively high Peclet number due to its favorable stability properties and explicitly available coefficients. The construction of the new schemes is based on stabilization using second kind Chebyshev polynomials first used in the construction of the stochastic integrator SK-ROCK. We propose an adaptive algorithm to implement the new scheme that is able to automatically select the suitable step size, number of stages, and damping parameter at each integration step. Numerical experiments that illustrate the efficiency of the new methods are presented.
翻译:我们引入了新型的第二序列,即明确稳定的龙格-库塔-切尔比舍夫(Ringk-Chebyshev)方法,用于消化-扩散-反应方程式,该方程式由于有利的稳定性特性和明确可用的系数,优于相对较高的佩克列数的现有方案,其效果优于现有方案。新方案的构建基于稳定,使用了在建造SK-ROCK合成器时首先使用的第二类Chebyshev多元米亚仪。我们建议了一种适应性算法,以实施新方案,能够自动选择每个整合步骤的适当步数、阶段数和阻隔参数。我们介绍了说明新方法效率的数值实验。