We study two of the most popular performance metrics in medical image segmentation, Accuracy and Dice, when the target labels are noisy. For both metrics, several statements related to characterization and volume properties of the set of optimal segmentations are proved, and associated experiments are provided. Our main insights are: (i) the volume of the solutions to both metrics may deviate significantly from the expected volume of the target, (ii) the volume of a solution to Accuracy is always less than or equal to the volume of a solution to Dice and (iii) the optimal solutions to both of these metrics coincide when the set of feasible segmentations is constrained to the set of segmentations with the volume equal to the expected volume of the target.
翻译:我们研究了在医疗图像分割方面最受欢迎的两种性能衡量标准,即准确度和骰子,当目标标签吵闹时,我们研究了两种性能衡量标准,对于这两种标准,都证明了与一套最佳分解的特性和体积特性有关的若干说明,并提供了相关的实验,我们的主要见解是:(一)两种指标的解决方案量可能大大偏离目标的预期量;(二)对准确度的解决方案量总是小于或等于对骰子的解决方案量;(三)当一套可行的分解方法受一组分解的制约,其数量与目标的预期量相等时,这两种衡量标准的最佳解决办法恰好吻合。