Multi-modal MRIs are widely used in neuroimaging applications since different MR sequences provide complementary information about brain structures. Recent works have suggested that multi-modal deep learning analysis can benefit from explicitly disentangling anatomical (shape) and modality (appearance) information into separate image presentations. In this work, we challenge mainstream strategies by showing that they do not naturally lead to representation disentanglement both in theory and in practice. To address this issue, we propose a margin loss that regularizes the similarity in relationships of the representations across subjects and modalities. To enable robust training, we further use a conditional convolution to design a single model for encoding images of all modalities. Lastly, we propose a fusion function to combine the disentangled anatomical representations as a set of modality-invariant features for downstream tasks. We evaluate the proposed method on three multi-modal neuroimaging datasets. Experiments show that our proposed method can achieve superior disentangled representations compared to existing disentanglement strategies. Results also indicate that the fused anatomical representation has potential in the downstream task of zero-dose PET reconstruction and brain tumor segmentation. The code is available at \url{https://github.com/ouyangjiahong/representation-disentanglement}.
翻译:由于不同的MR序列提供了有关大脑结构的补充信息,因此在神经成像应用中广泛使用多式调制解调器,因为不同的MR序列提供了有关大脑结构的补充信息。最近的工作表明,多式深层学习分析可以从将解剖(形状)和模式(出现)信息明确脱钩的单独图像演示中受益。在这项工作中,我们挑战主流战略,显示它们不会自然导致理论和实践两方面的解析。为了解决这一问题,我们提议了一种差值损失,从而规范不同主题和模式之间代表关系的相似性。为了能够进行强有力的培训,我们进一步使用一个有条件的混音器来设计一种所有模式的编码图像的单一模型。最后,我们提议了一个聚合功能,将解析的解剖解解解解解(形状)和模式(出现)模式(出现)信息作为下游任务的一套模式-异性特征。我们评价了三种多式神经成形数据集的拟议方法。实验表明,我们提出的方法能够实现与现有解调战略的高度调解析。结果还表明,导解剖表解解剖表具有在零-DG/MASOMDRD/DRDRADRADRDRDRDRDRDRDDRDRDRDRDRDRDRDDRDDRDRDRDDDDRDRDRDRDRDRDRDDDDDDADDDDDDADADADADADADADDADDDDDRDRDRDADADDDDDDDD