In offline model-based optimization, we strive to maximize a black-box objective function by only leveraging a static dataset of designs and their scores. This problem setting arises in numerous fields including the design of materials, robots, DNA sequences, and proteins. Recent approaches train a deep neural network (DNN) on the static dataset to act as a proxy function, and then perform gradient ascent on the existing designs to obtain potentially high-scoring designs. This methodology frequently suffers from the out-of-distribution problem where the proxy function often returns poor designs. To mitigate this problem, we propose BiDirectional learning for offline Infinite-width model-based optimization (BDI). BDI consists of two mappings: the forward mapping leverages the static dataset to predict the scores of the high-scoring designs, and the backward mapping leverages the high-scoring designs to predict the scores of the static dataset. The backward mapping, neglected in previous work, can distill more information from the static dataset into the high-scoring designs, which effectively mitigates the out-of-distribution problem. For a finite-width DNN model, the loss function of the backward mapping is intractable and only has an approximate form, which leads to a significant deterioration of the design quality. We thus adopt an infinite-width DNN model, and propose to employ the corresponding neural tangent kernel to yield a closed-form loss for more accurate design updates. Experiments on various tasks verify the effectiveness of BDI. The code is available at https://github.com/GGchen1997/BDI.
翻译:在离线模型优化中,我们努力通过仅利用设计和分数的静态数据集,最大限度地优化黑箱目标功能。 这个问题的设置出现在多个领域, 包括材料、 机器人、 DNA序列和蛋白质的设计。 最近的方法在静态数据集上训练深神经网络( DNN ) 以作为代理功能, 然后对现有设计进行渐变, 以获得潜在的高分数设计。 这个方法经常受到分配外问题的影响, 代用功能通常会返回较差的设计。 为了缓解这一问题, 我们提议为离线的离线的线的线- 线形模型优化( BDI) 设置问题。 BDI 包括两个映射图: 远方绘图利用静态数据网来预测高分数, 而后向映出高分数的图设计。 后向下调模型( 先前工作中忽略了) 将更多来自静态数据集的信息提取到高分层设计中, 从而有效地减轻内值- 线- 线- 模型( BD) 的内值更新质量 。 因此, 将渐变变变的D- 格式的模型将产生一个可变式 D- 变式 变式 变式 变换成为 变式 D- 。