Restart has the potential of expediting or impeding the completion times of general random processes. Consequently, the issue of mean-performance takes center stage: quantifying how the application of restart on a process of interest impacts its completion-time's mean. Going beyond the mean, little is known on how restart affects stochasticity measures of the completion time. This paper is the first in a duo of studies that address this knowledge gap via: a comprehensive analysis that quantifies how sharp restart -- a keystone restart protocol -- impacts the completion-time's Boltzmann-Gibbs-Shannon entropy. The analysis establishes closed-form results for sharp restart with general timers, with fast timers (high-frequency resetting), and with slow timers (low-frequency resetting). These results share a common structure: comparing the completion-time's hazard rate to a flat benchmark -- the constant hazard rate of an exponential distribution whose entropy is equal to the completion-time's entropy. In addition, using an information-geometric approach based on Kullback-Leibler distances, the analysis establishes results that determine the very existence of timers with which the application of sharp restart decreases or increases the completion-time's entropy. Our work sheds first light on the intricate interplay between restart and randomness -- as gauged by the Boltzmann-Gibbs-Shannon entropy.
翻译:重新启动具有加快或阻碍一般随机进程的完成时间的潜力。 因此, 平均绩效问题处于中心阶段: 量化在利息过程中应用重新启动如何影响其完成时间的平均值。 超出平均值, 重新启动如何影响完成时间的随机度度度度度度, 鲜为人知。 本文是解决这一知识差距的研究中第一个在杜奥进行的研究, 其方式是: 全面分析, 量化了快速重开是如何影响完成时间的Boltzmann- Gibbs- hannonon 的重现协议。 分析通过一般计时器和快速计时器( 高频重设) 和慢计时器( 低频重设) 来建立快速重开启动进程。 这些结果有一个共同的结构: 将完成时间的危害率与一个固定基准 -- 即指数分布的恒定危险率率, 该指数性分布与完成时间值相等。 此外, 使用基于 Kullack- Leiber 距离的信息测算方法, 与普通计时程系统 快速重开关的重开关时间度重开关时间表,,, 分析结果 将决定我们重整的重整的完成时间表之间的时间表 和滚动的运行时间轴 。