We propose a generalization of the Wasserstein distance of order 1 to the quantum states of $n$ qudits. The proposal recovers the Hamming distance for the vectors of the canonical basis, and more generally the classical Wasserstein distance for quantum states diagonal in the canonical basis. The proposed distance is invariant with respect to permutations of the qudits and unitary operations acting on one qudit and is additive with respect to the tensor product. Our main result is a continuity bound for the von Neumann entropy with respect to the proposed distance, which significantly strengthens the best continuity bound with respect to the trace distance. We also propose a generalization of the Lipschitz constant to quantum observables. The notion of quantum Lipschitz constant allows us to compute the proposed distance with a semidefinite program. We prove a quantum version of Marton's transportation inequality and a quantum Gaussian concentration inequality for the spectrum of quantum Lipschitz Moreover, we derive bounds on the contraction coefficients of shallow quantum circuits and of the tensor product of one-qudit quantum channels with respect to the proposed distance. We discuss other possible applications in quantum machine learning, quantum Shannon theory, and quantum many-body systems.


翻译:我们建议将1号订单的瓦西斯坦距离与量子量子量子状态的瓦西斯坦距离普遍化。 该提案恢复了卡通基质矢量的哈姆林距离,更广义地恢复了卡通基质量子状态的古典瓦西斯坦距离。 所拟议的距离与量子量子和单体操作的变异性是不一致的,是对一个夸特和单体操作的变异性,并且是对粒子产物的添加。 我们的主要结果是冯纽曼在拟议的距离上的连续性,这大大加强了与痕量距离有关的最佳连续性。 我们还建议对利普西茨常量子常量值与量子观测值进行普遍化。 量子利普西茨常量子概念允许我们用半定型程序对拟议的距离进行比较。 我们证明了马尔顿运输不平等的量子量子浓度不平等的量子版, 以及量子 Lipschitz的频谱谱系的量子量子系数, 我们从浅量子电路路和1号动力产产品与量子理论中的最佳连续性。 我们还建议将利普西茨常量子量量量子的量子系统与其他量量子应用。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
PyTorch 实战:计算 Wasserstein 距离
Python开发者
4+阅读 · 2019年3月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
0+阅读 · 2021年9月21日
Arxiv
6+阅读 · 2018年3月12日
VIP会员
Top
微信扫码咨询专知VIP会员