We consider the power of local algorithms for approximately solving Max $k$XOR, a generalization of two constraint satisfaction problems previously studied with classical and quantum algorithms (MaxCut and Max E3LIN2). On instances with either random signs or no overlapping clauses and $D+1$ clauses per variable, we calculate the average satisfying fraction of the depth-1 QAOA and compare with a generalization of the local threshold algorithm. Notably, the quantum algorithm outperforms the threshold algorithm for $k > 4$. On the other hand, we highlight potential difficulties for the QAOA to achieve computational quantum advantage on this problem. We first compute a tight upper bound on the maximum satisfying fraction of nearly all large random regular Max $k$XOR instances by numerically calculating the ground state energy density $P(k)$ of a mean-field $k$-spin glass. The upper bound grows with $k$ much faster than the performance of both one-local algorithms. We also identify a new obstruction result for low-depth quantum circuits (including the QAOA) when $k=3$, generalizing a result of Bravyi et al [arXiv:1910.08980] when $k=2$. We conjecture that a similar obstruction exists for all $k$.


翻译:我们考虑了大约解决最大美元XOR的本地算法的力量,这是对古典算法和量子算法(MaxCut和Max E3LIN2)所研究的两个约束性满意度问题的概括化。关于随机标志或无重叠条款和每变量$D+1条款的例子,我们计算了深度-1 QAOA的平均满意度部分,并与当地阈值算法的一般化比较。值得注意的是,量子算法比美元大于美元4美元的阈值算法。另一方面,我们强调QAOA在在这个问题上实现计算量量子优势方面的潜在困难。我们首先通过数字计算地面状态能量密度的平均值-1 QAOA和美元+1美元每变量条款的最大满意度,我们计算了一个紧紧的上限,即几乎全部随机最大正值最大正值 Max $k$XOR 的上限部分,我们用美元比美元2 本地算法的运行速度快得多。我们还确定了低深度量子电路路(包括QAAAA$)的新阻力结果。当 $k=3时,我们用一个普通的平方为19。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
已删除
将门创投
4+阅读 · 2018年5月31日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Quantum and classical registers
Arxiv
0+阅读 · 2021年11月11日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
已删除
将门创投
4+阅读 · 2018年5月31日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员