Quantum low-density parity-check (LDPC) codes are a promising avenue to reduce the cost of constructing scalable quantum circuits. However, it is unclear how to implement these codes in practice. Seminal results of Bravyi & Terhal, and Bravyi, Poulin & Terhal have shown that quantum LDPC codes implemented through local interactions obey restrictions on their dimension $k$ and distance $d$. Here we address the complementary question of how many long-range interactions are required to implement a quantum LDPC code with parameters $k$ and $d$. In particular, in 2D we show that a quantum LDPC with distance $n^{1/2 + \epsilon}$ code requires $\Omega(n^{1/2 + \epsilon})$ interactions of length $\widetilde{\Omega}(n^{\epsilon})$. Further a code satisfying $k \propto n$ with distance $d \propto n^\alpha$ requires $\widetilde{\Omega}(n)$ interactions of length $\widetilde{\Omega}(n^{\alpha/2})$. Our results are derived using bounds on quantum codes from graph metrics. As an application of these results, we consider a model called a stacked architecture, which has previously been considered as a potential way to implement quantum LDPC codes. In this model, although most interactions are local, a few of them are allowed to be very long. We prove that limited long-range connectivity implies quantitative bounds on the distance and code dimension.


翻译:量子密度低的对等检查( LDPC) 代码是降低可缩放量子电路成本的有希望的途径。 然而, 在实践中如何执行这些代码还不清楚。 Bravyi & Terhal 和 Bravyi, Poulin & Terhal 的半调结果显示, 通过本地互动执行量子LDPC 代码的尺寸限制为$k美元和距离美元。 我们在这里讨论一个补充问题, 需要多少长距离互动才能实施量子LDPC 代码, 其参数为$k美元和$d。 尤其是, 在 2D中, 我们显示, 距离为1/2 +\ eepsilon} 代码的量子范围, 需要$%1/2 +\ eepsilon} 。 量子量子量子量子值的相互作用需要 $wmltipltiple $( nepsilon) 允许。 进一步的模型满足 $k\ 和 propto n $nalfal$ exto n$, 需要 $ $ bloeptealtile deal deal deal deal deal deal deal devel rate) (n) a max) a a a max max max res a a a a cal deal maxal a a fal deal deal be a a fal be a a a fal decelementsmus a.

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
26+阅读 · 2021年4月2日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月12日
Robust Eigenvectors of Symmetric Tensors
Arxiv
0+阅读 · 2021年11月12日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
3+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员