We propose quadratic residual networks (QRes) as a new type of parameter-efficient neural network architecture, by adding a quadratic residual term to the weighted sum of inputs before applying activation functions. With sufficiently high functional capacity (or expressive power), we show that it is especially good for solving forward and inverse physics problems involving partial differential equations (PDEs). Using tools from algebraic geometry, we theoretically demonstrate that, in contrast to plain neural networks, QRes shows better parameter efficiency in terms of network width and depth thanks to higher non-linearity in every neuron. Finally, we empirically show that QRes shows faster convergence speed in terms of number of training epochs especially in learning complex patterns.
翻译:我们建议四边残余网络(QRes)作为新型的参数高效神经网络结构,在投入的加权总和中增加一个二次剩余术语,然后才能应用激活功能。我们用足够高的功能能力(或表达力)来显示,它对于解决涉及部分差异方程(PDEs)的前方和反向物理问题特别有益。 我们使用代数几何方法的工具理论上证明,与普通神经网络相比,QRes在网络宽度和深度方面显示出更好的参数效率,因为每个神经神经的高度非线性更高。 最后,我们从经验上表明,QRes在培训阶段的数量方面表现出更快的趋同速度,特别是在学习复杂模式方面。