In the 1960s, Atkinson introduced an abstract algebraic setting for multiparameter eigenvalue problems. He showed that a nonsingular multiparameter eigenvalue problem is equivalent to the associated system of generalized eigenvalue problems, which is a key relation for many theoretical results and numerical methods for nonsingular multiparameter eigenvalue problems. In 2009, Muhi\v{c} and Plestenjak extended the above relation to a class of singular two-parameter eigenvalue problems with coprime characteristic polynomials and such that all finite eigenvalues are algebraically simple. They introduced a way to solve a singular two-parameter eigenvalue problem by computing the common regular eigenvalues of the associated system of two singular generalized eigenvalue problems. Using new tools, in particular the stratification theory, we extend this connection to singular two-parameter eigenvalue problems with possibly multiple eigenvalues and such that characteristic polynomials can have a nontrivial common factor.


翻译:1960年代, Atkinson 引入了多参数电子价值问题的抽象代数设置。 他显示,非单数多参数电子价值问题相当于通用电子价值问题的相关系统,这是许多非单数多参数电子价值问题理论结果和数字方法的关键关系。 2009年, Muhi\v{c} 和 Plestenjak 将上述关系扩展至一类单数双参数电子价值问题,其中含有多个特性的多数值,因此所有有限的电子价值都是简单的。他们引入了一种方法,通过计算两个单一通用电子价值问题相关系统共同的正常电子价值来解决单数电子价值问题。我们使用新的工具,特别是分层理论,将这种联系扩展至单一的两参数电子价值问题,其中可能含有多个电子价值,而且特性的多数值可能具有非三维共同因素。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
46+阅读 · 2021年10月10日
专知会员服务
50+阅读 · 2020年12月14日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
老铁,邀请你来免费学习人工智能!!!
量化投资与机器学习
4+阅读 · 2017年11月14日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员