We study a variant of the classical $k$-median problem known as diversity-aware $k$-median (introduced by Thejaswi et al. 2021), where we are given a collection of facility subsets, and a solution must contain at least a specified number of facilities from each subset.We investigate the fixed-parameter tractability of this problem and show several negative hardness and inapproximability results, even when we afford exponential running time with respect to some parameters of the problem. Motivated by these results we present a fixed parameter approximation algorithm with approximation ratio $(1 + \frac{2}{e} +\epsilon)$, and argue that this ratio is essentially tight assuming the gap-exponential time hypothesis. We also present a simple, practical local-search algorithm that gives a bicriteria $(2k, 3+\epsilon)$ approximation with better running time bounds.
翻译:我们研究传统美元-中位元问题的变式,即“多样性-能力-美元-中位元”(由Thejaswi等人所提出,2021年),我们在那里得到了一套设施子集,解决方案必须包含至少每个子集的一定数量的设施。我们调查这一问题的固定参数可移动性,并显示一些负面的硬性和不协调性结果,即使我们在某些参数上提供了指数运行时间。我们受这些结果的驱使,我们提出了一个固定参数近似值算法,近似率为$(1+\frac{2 ⁇ e} ⁇ psilon),并争辩说,假设差距-加速时间假设,这一比率基本上很紧。我们还提出一种简单、实用的本地研究算法,使双标准(2k,3 ⁇ psilon)美元近似值具有更好的运行时间界限。