Electron density $\rho(\vec{r})$ is the fundamental variable in the calculation of ground state energy with density functional theory (DFT). Beyond total energy, features and changes in $\rho(\vec{r})$ distributions are often used to capture critical physicochemical phenomena in functional materials. We present a machine learning framework for the prediction of $\rho(\vec{r})$. The model is based on equivariant graph neural networks and the electron density is predicted at special query point vertices that are part of the message passing graph, but only receive messages. The model is tested across multiple data sets of molecules (QM9), liquid ethylene carbonate electrolyte (EC) and LixNiyMnzCo(1-y-z)O2 lithium ion battery cathodes (NMC). For QM9 molecules, the accuracy of the proposed model exceeds typical variability in $\rho(\vec{r})$ obtained from DFT done with different exchange-correlation functionals. The accuracy on all three datasets is beyond state of the art and the computation time is orders of magnitude faster than DFT.
翻译:$\rho(\ vec{r}) 电子密度 $\rho(\ vec{r}) 是计算具有密度功能理论(DFT) 的地面状态能量的基本变量。 除了总能量外, 元元分配的特性和变化通常用于捕捉功能材料中的关键物理化学现象。 我们提出了一个用于预测$rho(\\\ vec{r}) 的机器学习框架。 模型以等同图形神经网络为基础, 电子密度预测在信息传递图中包含的特殊查询点的脊椎, 只能接收信息。 该模型在分子的多个数据集( QM9)、 液态碳酸乙烯电解( EC) 和 LixNiyMnzCo( 1-y-z) O2 锂电荷电池( NMCC) 。 对于 QM9 分子来说, 模型的准确性超过了 $\rho(\\\\ {vec} {r} 从DFT 中获取的典型变异性值, $。 在不同的交换- 功能计算中, 所有数据序列的精度是快度。