This report aims to characterise certain sojourn time distributions that naturally arise from semi-Markov models. To this end, it describes a family of discrete distributions that extend the geometric distribution for both finite and infinite time. We show formulae for the moment generating functions and the mean and variance, and give specific examples. We consider specific parametrised subfamilies; the linear factor model and simple polynomial factor models. We numerically simulate drawing from these distributions and solving for the Maximum Likelihood Estimators (MLEs) for the parameters of each subfamily, including for very small sample sizes. The report then describes the determination of the bias and variance of the MLEs, and shows how they relate to the Fisher information, where they exhibit appropriate concentration effects as the sample size increases. Finally, the report addresses an application of these methods to experimental data, which shows a strong fit with the simple polynomial factor model.
翻译:本报告旨在描述从半马尔科夫模型中自然产生的某些隔热时间分布。 为此, 它描述了一组离散分布, 将几何分布扩展至有限时间和无限时间。 我们为生成函数的时刻以及平均值和差异给出公式, 并给出具体实例。 我们考虑特定的偏差次家庭; 线性系数模型和简单的多元系数模型。 我们从这些分布中提取数字模拟并解决每个子家庭的参数, 包括非常小的样本大小。 报告然后描述对最小值的偏差和差异的确定, 并展示它们与渔业信息的关联, 当它们随着样本大小的增加而表现出适当的集中效应时。 最后, 报告谈到这些方法对实验数据的应用, 这表明这些方法与简单的多数值要素模型非常匹配。