Imputation of data with general structures (e.g., data with continuous, binary, unordered categorical, and ordinal variables) is commonly performed with fully conditional specification (FCS) instead of joint modeling. A key drawback of FCS is that it does not invoke an appropriate data augmentation mechanism and as such convergence of the resulting Markov chain Monte Carlo procedure is not assured. Methods that use joint modeling lack these drawbacks but have not been efficiently implemented in data of general structures. We address these issues by developing a new method, the so-called GERBIL algorithm, that draws imputations from a latent joint multivariate normal model that underpins the generally structured data. This model is constructed using a sequence of flexible conditional linear models that enables the resulting procedure to be efficiently implemented on high dimensional datasets in practice. Simulations show that GERBIL performs well when compared to those that utilize FCS. Furthermore, the new method is computationally efficient relative to existing FCS procedures.


翻译:用一般结构(如连续、二进制、无序绝对变量和正态变量的数据)对数据进行估计,通常采用完全有条件的规格(FCS),而不是联合建模。FCS的一个主要缺点是,它没有采用适当的数据增强机制,因此无法保证由此形成的Markov链 Monte Carlo程序的趋同。使用联合建模的方法缺乏这些缺陷,但在一般结构的数据中没有有效地实施。我们通过开发一种新的方法来解决这些问题,即所谓的GENRBIL算法,从支持一般结构化数据的潜在的联合多变量正常模型中提取估算值。这一模型是使用一个灵活的、灵活的有条件的线性模型序列来构建的,使由此产生的程序能够在实践中在高维数据集中高效实施。模拟表明,与使用FCS的数据相比,GRBIL在使用联合建模时表现良好。此外,新的方法与现有的FCS程序相比,具有计算效率。

0
下载
关闭预览

相关内容

FCS:Frontiers of Computer Science。 Explanation:计算机科学前沿。 Publisher:Higher Education Press。 SIT: http://dblp.uni-trier.de/db/journals/fcsc/
专知会员服务
25+阅读 · 2021年4月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员