Word alignment, which aims to align translationally equivalent words between source and target sentences, plays an important role in many natural language processing tasks. Current unsupervised neural alignment methods focus on inducing alignments from neural machine translation models, which does not leverage the full context in the target sequence. In this paper, we propose Mask-Align, a self-supervised word alignment model that takes advantage of the full context on the target side. Our model masks out each target token and predicts it conditioned on both source and the remaining target tokens. This two-step process is based on the assumption that the source token contributing most to recovering the masked target token should be aligned. We also introduce an attention variant called leaky attention, which alleviates the problem of unexpected high cross-attention weights on special tokens such as periods. Experiments on four language pairs show that our model outperforms previous unsupervised neural aligners and obtains new state-of-the-art results.
翻译:Word 匹配旨在将源与目标句的等同字对齐, 在许多自然语言处理任务中起着重要作用。 当前不受监督的神经调整方法侧重于导出神经机器翻译模型的对齐, 这在目标序列中无法充分利用整个背景。 在本文中, 我们提议使用目标侧整个背景的自我监督的词对齐模式Mask- Align。 我们的模型遮盖每个目标符号, 并预测它取决于源和剩余目标符号。 这个两步进程基于这样的假设: 最有助于恢复掩码目标符号的源符号应该对齐。 我们还引入了一个叫做漏注意力的注意变量, 以缓解特殊符号( 如时段)上意外的高交叉注意权重问题。 对四对语言的实验显示, 我们的模型比以往的未经监督的神经对齐功能要强, 并获得新的艺术状态结果 。