We describe a puzzle involving the interactions between an optimization of a multivariate quadratic function and a "plug-in" estimator of a spiked covariance matrix. When the largest eigenvalues (i.e., the spikes) diverge with the dimension, the gap between the true and the out-of-sample optima typically also diverges. We show how to "fine-tune" the plug-in estimator in a precise way to avoid this outcome. Central to our description is a "quadratic optimization bias" function, the roots of which determine this fine-tuning property. We derive an estimator of this root from a finite number of observations of a high dimensional vector. This leads to a new covariance estimator designed specifically for applications involving quadratic optimization. Our theoretical results have further implications for improving low dimensional representations of data, and principal component analysis in particular.
翻译:暂无翻译