This paper introduces an efficient algorithm for the sequential positioning (or nested dissection) of two planar interfaces in an arbitrary polyhedron, such that, after each truncation, the respectively remaining polyhedron admits a prescribed volume. This task, among others, is frequently encountered in the numerical simulation of three-phase flows when resorting to the geometric Volume-of-Fluid method. For two-phase flows, the recent work of Kromer and Bothe (arXiv:2101.03861) addresses the positioning of a single plane by combining an implicit bracketing of the sought position with up to third-order derivatives of the volume fraction. An analogous application of their highly efficient root-finding scheme to three-material configurations requires computing the volume of a twice truncated arbitrary polyhedron. The present manuscript achieves this by recursive application of the Gaussian divergence theorem in appropriate form, which allows to compute the volume as a sum of quantities associated to the faces of the original polyhedron. With a suitable choice of the coordinate origin, accounting for the sequential character of the truncation, the volume parametrization becomes co-moving with respect to the planes. This eliminates the necessity to establish topological connectivity and tetrahedron decomposition after each truncation. After a detailed mathematical description of the concept, we conduct a series of carefully designed numerical experiments to assess the performance in terms of polyhedron truncations. The high efficiency of the two-phase positioning persists for sequential application, thereby being robust with respect to input data and possible intersection topologies. In comparison to an existing decomposition-based approach, the number of truncations was reduced by up to an order of magnitude, further highlighting the superiority of the divergence-based volume computation.
翻译:本文引入了一种高效的算法, 用于任意的多面体中两个平面的连续定位( 或嵌入解剖), 这样在每次脱线后, 剩下的多面体将各自高效的根调查方案应用到三个材料配置中, 需要计算两次脱线的任意多面体。 在三相流动的数值模拟中, 通常会遇到这种任务。 在两相流动中, Kromer 和 Bothe 最近的工作( arXiv: 2101.03861) 解决单平面的定位, 方法是将所寻求的位置的隐含的括号与最多为第三级的体积分数衍生物结合起来。 将高根调查方法的类似应用到三个材料配置中, 需要计算两次脱轨的任意多面体。 目前的手稿通过反复应用高分解调分解调调, 能够进一步计算与原始多面体积法面体系相关的数量总和数量。 有了适当的协调来源选择, 将精确的轨迹分级变变变变变的轨过程, 成为了对数字变的轨的顺序, 。 在轨变数中, 变变的计算中, 变数的轨变的计算中, 变变的轨变变的轨变变的变的变到的轨的轨的变的变的变的变到的变到的变的变的变到的变到的变到的变到的变到的变到的变的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到变到变到变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到的变到