We present two a posteriori error estimators for the virtual element method (VEM) based on global and local flux reconstruction in the spirit of [5]. The proposed error estimators are reliable and efficient for the $h$-, $p$-, and $hp$-versions of the VEM. This solves a partial limitation of our former approach in [6], which was based on solving local nonhybridized mixed problems. Differently from the finite element setting, the proof of the efficiency turns out to be simpler, as the flux reconstruction in the VEM does not require the existence of polynomial, stable, divergence right-inverse operators. Rather, we only need to construct right-inverse operators in virtual element spaces, exploiting only the implicit definition of virtual element functions. The theoretical results are validated by some numerical experiments on a benchmark problem.


翻译:我们提出了基于[5] 精神的全球和本地通量重建的虚拟元件方法(VEM)的事后误差估计值。提议的误差估计值对于VEM的美元-、美元-和美元-和美元-版本是可靠和高效的。这解决了我们以前在[6]中的方法的局部限制,而[6]中的方法基于解决当地非湿化混合问题。与有限要素设置不同,效率的证明证明更简单,因为VEM的通量重建并不要求存在多元、稳定、分立右反操作器。相反,我们只需要在虚拟元件空间建造右反操作器,只利用虚拟元函数的隐含定义。理论结果通过一些关于基准问题的数字实验得到验证。

0
下载
关闭预览

相关内容

【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
74+阅读 · 2021年1月10日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
Arxiv
5+阅读 · 2020年3月16日
VIP会员
相关VIP内容
【2021新书】编码艺术,Coding Art,284页pdf
专知会员服务
74+阅读 · 2021年1月10日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
手把手教你由TensorFlow上手PyTorch(附代码)
数据派THU
5+阅读 · 2017年10月1日
Top
微信扫码咨询专知VIP会员