Modern social and biomedical scientific publications require the reporting of covariate balance tables with not only covariate means by treatment group but also the associated $p$-values from significance tests of their differences. The practical need to avoid small $p$-values renders balance check and rerandomization by hypothesis testing standards an attractive tool for improving covariate balance in randomized experiments. Despite the intuitiveness of such practice and its arguably already widespread use in reality, the existing literature knows little about its implications on subsequent inference, subjecting many effectively rerandomized experiments to possibly inefficient analyses. To fill this gap, we examine a variety of potentially useful schemes for rerandomization based on $p$-values (ReP) from covariate balance tests, and demonstrate their impact on subsequent inference. Specifically, we focus on three estimators of the average treatment effect from the unadjusted, additive, and fully interacted linear regressions of the outcome on treatment, respectively, and derive their respective asymptotic sampling properties under ReP. The main findings are twofold. First, the estimator from the fully interacted regression is asymptotically the most efficient under all ReP schemes examined, and permits convenient regression-assisted inference identical to that under complete randomization. Second, ReP improves not only covariate balance but also the efficiency of the estimators from the unadjusted and additive regressions asymptotically. The standard regression analysis, in consequence, is still valid but can be overly conservative.
翻译:暂无翻译