Multi-party dialogue machine reading comprehension (MRC) brings tremendous challenge since it involves multiple speakers at one dialogue, resulting in intricate speaker information flows and noisy dialogue contexts. To alleviate such difficulties, previous models focus on how to incorporate these information using complex graph-based modules and additional manually labeled data, which is usually rare in real scenarios. In this paper, we design two labour-free self- and pseudo-self-supervised prediction tasks on speaker and key-utterance to implicitly model the speaker information flows, and capture salient clues in a long dialogue. Experimental results on two benchmark datasets have justified the effectiveness of our method over competitive baselines and current state-of-the-art models.
翻译:多党对话机器阅读理解(MRC)带来了巨大的挑战,因为它在一次对话中涉及多个发言者,导致发言者信息流动和吵闹的对话环境错综复杂。为了缓解这些困难,以前的模型侧重于如何使用复杂的图表模块和额外的人工标签数据(在真实情况下通常很少使用)纳入这些信息。在本文中,我们设计了两种无劳动力的自我和伪自我监督的演讲者和关键人物预测任务,以隐含地模拟演讲者信息流动,并在长期对话中捕捉突出的线索。 两种基准数据集的实验结果证明我们的方法相对于竞争性基线和最新模型是有效的。