We propose a new deep learning-based method for estimating the occupancy of vegetation strata from airborne 3D LiDAR point clouds. Our model predicts rasterized occupancy maps for three vegetation strata corresponding to lower, medium, and higher cover. Our weakly-supervised training scheme allows our network to only be supervised with vegetation occupancy values aggregated over cylindrical plots containing thousands of points. Such ground truth is easier to produce than pixel-wise or point-wise annotations. Our method outperforms handcrafted and deep learning baselines in terms of precision by up to 30%, while simultaneously providing visual and interpretable predictions. We provide an open-source implementation along with a dataset of 199 agricultural plots to train and evaluate weakly supervised occupancy regression algorithms.
翻译:我们提出了一个新的深层次学习方法,用于从空中3D LiDAR点云中估计植被层的占用情况。我们的模型预测了与低层、中层和高层覆盖相对的三个植被层的光化占用图。我们受到监督的薄弱培训计划使我们的网络只能以覆盖数千个点的圆柱形地块的植被占用值来监督。这种地面真相比像素或尖锐的注释更容易产生。我们的方法在精确度方面比手工制作的深层学习基线高出30%,同时提供可视和可解释的预测。我们提供了开源执行,同时提供了199个农业地块的数据集,用于培训和评估薄弱监督的占用回归算法。