High-frequency wave propagation has many important applications in acoustics, elastodynamics, and electromagnetics. Unfortunately, the finite element discretization for these problems suffers from significant numerical pollution errors that increase with the wavenumber. It is critical to control these errors to obtain a stable and accurate method. We study the effect of pollution for very long waveguide problems in the context of robust discontinuous Petrov-Galerkin (DPG) finite element discretizations. Our numerical experiments show that the pollution primarily has a diffusive effect causing energy loss in the DPG method while phase errors appear less significant. We report results for 3D vectorial time-harmonic Maxwell problems in waveguides with more than 8000 wavelengths. Our results corroborate previous analysis for the Galerkin discretization of the Helmholtz operator by Melenk and Sauter (2011). Additionally, we discuss adaptive refinement strategies for multi-mode fiber waveguides where the propagating transverse modes must be resolved sufficiently. Our study shows the applicability of the DPG error indicator to this class of problems. Finally, we illustrate the importance of load balancing in these simulations for distributed-memory parallel computing.
翻译:高频波的传播在声学、 Elastomics 和电磁学中有许多重要应用。 不幸的是,这些问题的有限元素分解存在随着波数的增加而增加的重大数字污染错误。 控制这些错误对于获得稳定和准确的方法至关重要。 我们研究了在强大的不连续Petrov-Galerkin(DPG)有限元素分解背景下污染对非常长波导问题的影响。 我们的数字实验显示,污染主要具有分解效应,在DPG方法中造成能源损失,而相位错误则显得不太明显。 我们报告在波导中出现超过8000波长的3D矢量时- 调最大损耗问题的结果。 我们的结果证实了以前对Melenk 和 Sauter(2011年) 的Helmholtz 操作员的Galerkin分解的分析。 此外,我们讨论了多模式纤维波导的适应性改进战略,其中传播反向模式必须得到充分解决。 我们的研究显示DPG错误指标对此类问题的可适用性。 最后,我们说明了这些模拟中分布式计算机的负载量平衡的重要性。