A new two-level finite element method is introduced for the approximations of the residual-free bubble (RFB) functions and its application to the Helmholtz equation with large wave numbers is considered. Although this approach was considered for the Helmholtz equation before, our new insights show that some of its important properties have remained hidden. Unlike the other equations such as the advection-diffusion equation, RFB method when applied to the Helmholtz equation does not depend on another stabilized method to obtain approximations to the solutions of the sub-problems. Furthermore, it is possible to further increase the accuracy of the solutions in 2D by increasing the support of the integrals containing the bubble functions. The modified-RFB is able to solve the Helmholtz equation efficiently in 2D up to ch = 3.5 where c is the wave number and h is the mesh size.


翻译:对剩余无气泡功能的近似值及其适用于具有大波数的Helmholtz方程式的应用,采用了一个新的两级有限要素方法。虽然以前曾考虑过这一方法用于Helmholtz方程式,但我们的新见解显示,其一些重要属性仍然隐藏着。与其他等式不同,如平流-扩散方程式,在应用Helmholtz方程式时的RFB方法并不取决于另一种稳定方法,以获得与子问题解决方案的近似值。此外,通过增加对含有气泡功能的构件的支持,有可能进一步提高2D解决方案的准确性。修改后-RFB能够以2D有效解析赫姆霍茨方程式,直至ch=3.5,其中c是波数,h是网形大小。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年1月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员