We investigate the theoretical complexity of branch-and-bound (BB) and cutting plane (CP) algorithms for mixed-integer optimization. In particular, we study the relative efficiency of BB and CP, when both are based on the same family of disjunctions. We extend a result of Dash to the nonlinear setting which shows that for convex 0/1 problems, CP does at least as well as BB, with variable disjunctions. We sharpen this by giving instances of the stable set problem where we can provably establish that CP does exponentially better than BB. We further show that if one moves away from 0/1 sets, this advantage of CP over BB disappears; there are examples where BB finishes in O(1) time, but CP takes infinitely long to prove optimality, and exponentially long to get to arbitrarily close to the optimal value (for variable disjunctions). We next show that if the dimension is considered a fixed constant, then the situation reverses and BB does at least as well as CP (up to a polynomial blow up), no matter which family of disjunctions is used. This is also complemented by examples where this gap is exponential (in the size of the input data).
翻译:我们调查了分支和约束(BB)和切除平面(CP)算法对于混合整数优化的理论复杂性。 特别是, 我们研究了BB和CP的相对效率, 当两者都基于相同的脱节式组合。 我们将Dash的结果推广到非线性设置, 这表明对于 convex 0/1 问题, CP 至少有与 BB 和 BB 相交。 我们通过给出稳定设置问题的例子来对此加以细化。 我们通过这些例子来细化这一点, 我们可以准确地确定 CP 的指数比 BB 高。 我们进一步表明, 如果从 0/1 套移动, CP 相对于 BB 的优势就会消失; 有实例显示 BB 在 O(1) 时间完成 B, 但是 CP 需要无限长的时间来证明最佳性, 并且 指数性地长到任意接近最佳值( 对于变量脱节点) 。 我们接下来显示, 如果这个维度被认为是固定的, 那么情况会逆转, BB 并且至少是CP CP( 至 聚合间断裂式的打击 ),, 没有什么物质可以补充这个指数性数据 。