Antimicrobial resistance (AMR) is a risk for patients and a burden for the healthcare system. However, AMR assays typically take several days. This study develops predictive models for AMR based on easily available clinical and microbiological predictors, including patient demographics, hospital stay data, diagnoses, clinical features, and microbiological/antimicrobial characteristics and compares those models to a naive antibiogram based model using only microbiological/antimicrobial characteristics. The ability to predict the resistance accurately prior to culturing could inform clinical decision-making and shorten time to action. The machine learning algorithms employed here show improved classification performance (area under the receiver operating characteristic curve 0.88-0.89) versus the naive model (area under the receiver operating characteristic curve 0.86) for 6 organisms and 10 antibiotics using the Philips eICU Research Institute (eRI) database. This method can help guide antimicrobial treatment, with the objective of improving patient outcomes and reducing the usage of unnecessary or ineffective antibiotics.
翻译:抗微生物抗药性(AMR)是病人的一种风险,也是保健系统的一个负担,但是,AMR的化验通常需要数天时间,这项研究根据容易获得的临床和微生物预测器,包括病人人口统计、住院数据、诊断、临床特征和微生物/抗微生物特征,为AMR开发预测模型,并将这些模型与仅使用微生物/抗微生物特征的天真抗生素模型进行比较。在开业前准确预测抗菌性的能力可以为临床决策提供信息,缩短行动时间。这里使用的机器学习算法显示,分类性能有所改善(接收器操作特征曲线0.88-0.89之下的区域),而天性模型(接收器操作特征曲线0.86下的区域,6个生物和10个抗生素,使用Philips eICU研究所(eRI)数据库)。这种方法有助于指导抗微生物治疗,目的是改善病人的结果,减少不必要或无效的抗生素的使用。