The restoration lemma by Afek, Bremler-Barr, Kaplan, Cohen, and Merritt [Dist.\ Comp.\ '02] proves that, in an undirected unweighted graph, any replacement shortest path avoiding a failing edge can be expressed as the concatenation of two original shortest paths. However, the lemma is tiebreaking-sensitive: if one selects a particular canonical shortest path for each node pair, it is no longer guaranteed that one can build replacement paths by concatenating two selected shortest paths. They left as an open problem whether a method of shortest path tiebreaking with this desirable property is generally possible. We settle this question affirmatively with the first general construction of restorable tiebreaking schemes. We then show applications to various problems in fault-tolerant network design. These include a faster algorithm for subset replacement paths, more efficient fault-tolerant (exact) distance labeling schemes, fault-tolerant subset distance preservers and $+4$ additive spanners with improved sparsity, and fast distributed algorithms that construct these objects. For example, an almost immediate corollary of our restorable tiebreaking scheme is the first nontrivial distributed construction of sparse fault-tolerant distance preservers resilient to three faults.


翻译:Afek, Bremler-Barr, Kaplan, Cohen, and Merritt[Dist.\ comp.\\ '02] 的修复列玛的修复列姆玛证明,在未定向的未加权图表中,任何避免故障边缘的更短路径的替代最短路径都可以表现为两个原始最短路径的交融。然而,列马具有触觉性敏感性:如果一个人为每个节点选择一个特定的班式最短路径,那么就不再保证一个人能够通过连接两个选定的最短路径来建造替代路径。它们留下的问题是一个开放的问题,即是否一般有可能使用一条最短路径与这一理想属性断开的方法。我们肯定地解决这个问题的方法是第一个可恢复性断开的连接计划的一般构造。我们随后展示了在错误容忍性网络设计中各种问题的应用。其中包括对子替换路径的快速算法、更高效的防过错(Exact)的距离标签计划、过敏的子距离保护器和用改良的加价4美元的添加器,以及构建这些对象的快速分布的算法。例如可稳定度的断断断断断断断断的三个断断断断断的断式计划是第一个的断断断断断断断断的断断断断断断的断的断断的断的断断断断的断的断的断断断断的断的断的断的断的断的断的断方案。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
专知会员服务
25+阅读 · 2021年4月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
已删除
将门创投
18+阅读 · 2019年2月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月16日
The Completion of Covariance Kernels
Arxiv
0+阅读 · 2021年7月15日
Arxiv
0+阅读 · 2021年7月15日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
已删除
将门创投
18+阅读 · 2019年2月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员