We introduce the notion of Levenshtein graphs, an analog to Hamming graphs but using the edit distance instead of the Hamming distance; in particular, Levenshtein graphs allow for underlying strings (nodes) of different lengths. We characterize various properties of these graphs, including a necessary and sufficient condition for their geodesic distance to be identical to the edit distance, their automorphism group and determining number, and an upper bound on their metric dimension. Regarding the latter, we construct a resolving set composed of two-run strings and an algorithm that computes the edit distance between a string of length $k$ and any single-run or two-run string in $O(k)$ operations.
翻译:我们引入了Levenshtein 图形的概念,这是一个模拟Hamming 图形的概念,但使用编辑距离而不是Hamming 距离; 特别是, Levenshtein 图形允许不同长度的根字符串( 节点) 。 我们描述这些图形的各种属性, 包括一个必要和充分的条件, 使这些图形的大地测量距离与编辑距离、 其自成一体的组合和确定数字相同, 以及其测量维度的上限。 关于后者, 我们构建了一个由双运行字符串组成的解决方案集, 以及一个算法, 以 $( k) 和 $( k) 操作中的任何单运行或双运行字符之间的编辑距离 。