Let $\mathscr{G}$ be the class of plane graphs without triangles normally adjacent to $8^{-}$-cycles, without $4$-cycles normally adjacent to $6^{-}$-cycles, and without normally adjacent $5$-cycles. In this paper, it is showed that every graph in $\mathscr{G}$ is $3$-choosable. Instead of proving this result, we directly prove a stronger result in the form of "weakly" DP-$3$-coloring. The main theorem improves the results in [J. Combin. Theory Ser. B 129 (2018) 38--54; European J. Combin. 82 (2019) 102995]. Consequently, every planar graph without $4$-, $6$-, $8$-cycles is $3$-choosable, and every planar graph without $4$-, $5$-, $7$-, $8$-cycles is $3$-choosable. In the third section, it is proved that the vertex set of every graph in $\mathscr{G}$ can be partitioned into an independent set and a set that induces a forest, which strengthens the result in [Discrete Appl. Math. 284 (2020) 626--630]. In the final section, tightness is considered.
翻译:让$mathscr{G}美元成为平面图的类别,没有通常与8美元周期相邻的三角形,没有通常与6美元周期相邻的四美元周期,没有通常与6美元周期相邻的四美元周期,没有通常相邻的五美元周期。在本文中显示,每张平面图($mathscr{G}美元)都是可选择的三美元。我们没有证明这一结果,而是以“微弱” DP-33美元彩色的形式直接证明一个较强的结果。在第三节中,主要理论改善了[J. 合并. Theory Ser. B 129 (2018) 38-54;欧洲J. 组合. 82 (2019) 102-995]的结果。因此,每张平面图($6美元,8美元)是可选择的,每张平面图(4美元,5美元,7美元,7美元,8美元)是可选择的。在第三节中,可以证明每个平面图($\ccrass)中的倒值每张的倒数组都是独立的(20美元)的。