Correctly capturing intraoperative brain shift in image-guided neurosurgical procedures is a critical task for aligning preoperative data with intraoperative geometry, ensuring effective surgical navigation and optimal surgical precision. While the finite element method (FEM) is a proven technique to effectively approximate soft tissue deformation through biomechanical formulations, their degree of success boils down to a trade-off between accuracy and speed. To circumvent this problem, the most recent works in this domain have proposed leveraging data-driven models obtained by training various machine learning algorithms, e.g. random forests, artificial neural networks (ANNs), with the results of finite element analysis (FEA) to speed up tissue deformation approximations by prediction. These methods, however, do not account for the structure of the finite element (FE) mesh during training that provides information on node connectivities as well as the distance between them, which can aid with approximating tissue deformation based on the proximity of force load points with the rest of the mesh nodes. Therefore, this work proposes a novel framework, PhysGNN, a data-driven model that approximates the solution of FEA by leveraging graph neural networks (GNNs), which are capable of accounting for the mesh structural information and inductive learning over unstructured grids and complex topological structures. Empirically, we demonstrate that the proposed architecture, PhysGNN, promises accurate and fast soft tissue deformation approximations while remaining computationally feasible, suitable for neurosurgical settings.


翻译:正确捕捉成像制神经外科手术程序内部大脑变化的操作性大脑变化,是将预操作数据与内操作性几何相协调的关键任务,确保有效的外科导航和最佳外科精确度。虽然有限元素方法(FEM)是有效通过生物机械配方接近软组织变形的技术,但其成功程度归结为精确度和速度之间的权衡。为回避这一问题,这一领域最近的工作提议利用通过培训各种软机学习算法获得的数据驱动模型,如随机森林、人工神经网络(ANNS),并辅之以有限元素分析(FEA)的结果,以通过预测加快组织变形的近速。然而,这些方法并不说明通过生物机械配方配方(FEM)有效估计软组织变形结构结构结构的结构,即提供无差别连接信息的信息以及它们之间的距离,从而帮助根据拟议重力负载点与网形节点的距离来进行适应性组织变形。因此,这项工作提出了一个新的框架,PhysGNNN, 一种数据驱动型结构的准确性结构,而能够将精度模型作为FNEG的系统结构的模型,而能化结构的模型,用以将硬化结构的模型作为我们学习结构结构结构的缩压的模型的模型,从而在结构中,而使FNESALGLA的精度结构结构结构的精度的精确性模型的精确性模型的精确性结构的模型成为了。

0
下载
关闭预览

相关内容

IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
63+阅读 · 2020年7月16日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年10月28日
Arxiv
4+阅读 · 2020年10月18日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人工智能 | 国际会议信息6条
Call4Papers
4+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员