A set $D$ of vertices of a graph is a defensive alliance if, for each element of $D$, the majority of its neighbours are in $D$. We consider the notion of local minimality in this paper. We are interested in locally minimal defensive alliance of maximum size. This problem is known to be NP-hard but its parameterized complexity remains open until now. We enhance our understanding of the problem from the viewpoint of parameterized complexity. The main results of the paper are the following: (1) Locally Minimal Defensive Alliance and Connected Locally Minimal Defensive Alliance are fixed-parameter tractable (FPT) when parameterized by the solution size and $\Delta$, (2) Locally Minimal Defensive Alliance on the graphs of minimum degree at least 2, admits a kernel with at most ${f(k)}^{2k^2+4k}$ vertices for some computable function $f(k)$. In particular, we prove that the problem on triangle-free graphs of minimum degree at least 2, admits a kernel with at most $k^{\mathcal{O}(k^2)}$ vertices, where as the problem on planar graphs of minimum degree at least 2, admits a kernel with at most $k^{\mathcal{O}(k^4)}$ vertices. We also prove that (3) Locally Minimal DA Extension is NP-complete.
翻译:图形的一组顶点为 $D 美元 。 如果对每个元素的美元来说, 其大多数邻居都是 $D 美元, 则该图的一组顶点为 防御联盟 。 我们考虑本文中的本地最小值概念 。 我们对本地最小值最小值最小值最小值最小值最小值最小值概念 。 这个问题已知是 NP 硬的, 但其参数复杂性至今仍然开放 。 我们从参数复杂度的角度来看, 提高了我们对问题的理解 。 本文的主要结果如下:(1) 本地最小值最小值 联盟 和 连接本地最小值最小值最小值 的扩展度联盟 。 当根据解决方案大小和 $\ Delta$ 参数参数来设定本地最小值最小值概念 。 (2) 本地值最小值最小值为 2, 本地值 2 k2 +4 k +4k} 的顶点值 。 我们特别证明, 最小度值最低值的三角无值图问题至少2, 最低值为Ok 。