Authentication plays a significant part in dealing with security in public and private sectors such as healthcare systems, banking system, transportation system and law and security. Biometric technology has grown quickly recently, especially in the areas of artificial intelligence and identity. Formerly, authentication process has depended on security measures like passcodes, identity fobs, and fingerprints. On the other hand, as just a consequence of these precautions, theft has increased in frequency. In response, biometric security was created, in which the identification of a person is based on features derived from the physiological and behavioral traits of a human body using biometric system. Biometric technology gadgets are available to the public as they are embedded on computer systems, electronic devices, mobile phones, and other consumer electronics. As the fraudulent is increasing demand and use of biometric electronic devices has increased. As a consequence, it may be possible to confirm a person's distinct identification. The goal of this study is to examine developments in biometric systems in the disciplines of medicine and engineering. The study will present the perspectives and different points of view of the secondary data, highlighting the need for more in-depth understanding and application of biometric technology to promote its development in the digital era. The study's findings may inspire people and businesses to more effectively incorporate biometric technologies in order to reduce the risks to data and identity security.


翻译:生物计量技术最近迅速发展,特别是在人工智能和身份领域; 认证程序取决于密码、身份标签和指纹等安全措施; 另一方面,由于这些预防措施的结果,盗窃现象更加频繁; 作为回应,建立了生物鉴别安全,根据人体生理和行为特征的特征,使用生物鉴别系统确定一个人; 生物测定技术工具可供公众使用,因为它们嵌入计算机系统、电子装置、移动电话和其他消费电子设备; 由于欺诈性正在增加,生物鉴别电子装置的需求和使用有所增加,因此,有可能确认一个人的独特身份; 这项研究的目的是研究医学和工程学科生物鉴别系统的发展情况; 研究将提出次级数据的观点和不同观点,强调需要更深入地了解和应用生物测定技术,以便在数字技术、电子设备、移动电话和其他消费电子产品中促进生物鉴别技术的发展; 研究可以降低数字技术的发展,从而将生物鉴别技术纳入数字时代。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2022年8月16日
Arxiv
32+阅读 · 2022年5月23日
Arxiv
31+阅读 · 2022年2月15日
Arxiv
11+阅读 · 2021年12月8日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
10+阅读 · 2020年11月26日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员