In this paper we present an immersed weak Galerkin method for solving second-order elliptic interface problems on polygonal meshes, where the meshes do not need to be aligned with the interface. The discrete space consists of constants on each edge and broken linear polynomials satisfying the interface conditions in each element. For triangular meshes, such broken linear plynomials coincide with the basis functions in immersed finite element methods [26]. We establish some approximation properties of the broken linear polynomials and the discrete weak gradient of a certain projection of the solution on polygonal meshes. We then prove an optimal error estimate of our scheme in the discrete $H^1$-seminorm under some assumptions on the exact solution. Numerical experiments are provided to confirm our theoretical analysis.
翻译:在本文中,我们展示了一种被浸泡的微弱Galerkin方法,用以解决多边形间歇物的二阶椭圆形界面问题,其间贝不需要与界面对齐。离散空间包括每个边缘的常数和每个边缘符合每个元素界面条件的折断线性多面体。对于三角形间歇物,这种折断的线性阴性与浸泡的有限元素方法[26]的基础功能相吻合。我们建立了断裂的线性多面形的近似特性和对多边形间歇物某种溶液投影的离散性弱梯度。我们随后证明,根据对精确溶液的某些假设,我们对离散值$H$1美元-半向量体的图案进行了最佳的误差估计。提供了数值实验,以证实我们的理论分析。