This paper proposes a sparse regression strategy for discovery of ordinary and partial differential equations from incomplete and noisy data. Inference is performed over both equation parameters and state variables using a statistically motivated likelihood function. Sparsity is enforced by a selection algorithm which iteratively removes terms and compares models using statistical information criteria. Large scale optimization is performed using a second-order variant of the Levenberg-Marquardt method, where the gradient and Hessian are computed via automatic differentiation. Illustrations involving canonical systems of ordinary and partial differential equations are used to demonstrate the flexibility and robustness of the approach. Accurate reconstruction of systems is found to be possible even in extreme cases of limited data and large observation noise.
翻译:暂无翻译