Graphs model complex relationships between entities, with nodes and edges capturing intricate connections. Node representation learning involves transforming nodes into low-dimensional embeddings. These embeddings are typically used as features for downstream tasks. Therefore, their quality has a significant impact on task performance. Existing approaches for node representation learning span (semi-)supervised, unsupervised, and self-supervised paradigms. In graph domains, (semi-)supervised learning often only optimizes models based on class labels, neglecting other abundant graph signals, which limits generalization. While self-supervised or unsupervised learning produces representations that better capture underlying graph signals, the usefulness of these captured signals for downstream target tasks can vary. To bridge this gap, we introduce Target-Aware Contrastive Learning (Target-aware CL) which aims to enhance target task performance by maximizing the mutual information between the target task and node representations with a self-supervised learning process. This is achieved through a sampling function, XGBoost Sampler (XGSampler), to sample proper positive examples for the proposed Target-Aware Contrastive Loss (XTCL). By minimizing XTCL, Target-aware CL increases the mutual information between the target task and node representations, such that model generalization is improved. Additionally, XGSampler enhances the interpretability of each signal by showing the weights for sampling the proper positive examples. We show experimentally that XTCL significantly improves the performance on two target tasks: node classification and link prediction tasks, compared to state-of-the-art models.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
19+阅读 · 2018年5月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员