This paper demonstrates the potential for autonomous cyber defence to be applied on industrial control systems and provides a baseline environment to further explore Multi-Agent Reinforcement Learning's (MARL) application to this problem domain. It introduces a simulation environment, IPMSRL, of a generic Integrated Platform Management System (IPMS) and explores the use of MARL for autonomous cyber defence decision-making on generic maritime based IPMS Operational Technology (OT). OT cyber defensive actions are less mature than they are for Enterprise IT. This is due to the relatively brittle nature of OT infrastructure originating from the use of legacy systems, design-time engineering assumptions, and lack of full-scale modern security controls. There are many obstacles to be tackled across the cyber landscape due to continually increasing cyber-attack sophistication and the limitations of traditional IT-centric cyber defence solutions. Traditional IT controls are rarely deployed on OT infrastructure, and where they are, some threats aren't fully addressed. In our experiments, a shared critic implementation of Multi Agent Proximal Policy Optimisation (MAPPO) outperformed Independent Proximal Policy Optimisation (IPPO). MAPPO reached an optimal policy (episode outcome mean of 1) after 800K timesteps, whereas IPPO was only able to reach an episode outcome mean of 0.966 after one million timesteps. Hyperparameter tuning greatly improved training performance. Across one million timesteps the tuned hyperparameters reached an optimal policy whereas the default hyperparameters only managed to win sporadically, with most simulations resulting in a draw. We tested a real-world constraint, attack detection alert success, and found that when alert success probability is reduced to 0.75 or 0.9, the MARL defenders were still able to win in over 97.5% or 99.5% of episodes, respectively.


翻译:暂无翻译

1
下载
关闭预览

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Instruction Tuning for Large Language Models: A Survey
Arxiv
15+阅读 · 2023年8月21日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员