Inferring the potential consequences of an unobserved event is a fundamental scientific question. To this end, Pearl's celebrated do-calculus provides a set of inference rules to derive an interventional probability from an observational one. In this framework, the primitive causal relations are encoded as functional dependencies in a Structural Causal Model (SCM), which are generally mapped into a Directed Acyclic Graph (DAG) in the absence of cycles. In this paper, by contrast, we capture causality without reference to graphs or functional dependencies, but with information fields and Witsenhausen's intrinsic model. The three rules of do-calculus reduce to a unique sufficient condition for conditional independence, the topological separation, which presents interesting theoretical and practical advantages over the d-separation. With this unique rule, we can deal with systems that cannot be represented with DAGs, for instance systems with cycles and/or 'spurious' edges. We treat an example that cannot be handled-to the extent of our knowledge-with the tools of the current literature. We also explain why, in the presence of cycles, the theory of causal inference might require different tools, depending on whether the random variables are discrete or continuous.


翻译:推断未观测事件的潜在后果是一个根本性的科学问题。 为此,珍珠的著名量测提供了一套从观测中得出干预概率的推论规则。在这个框架内,原始因果关系被编码为结构构造模型(SCM)的功能依赖性,在没有周期的情况下,这种模型一般被映射成定向自行车图(DAG ) 。在本文中,我们不参考图表或功能依赖性,而是通过信息字段和Witsenhausen的内在模型来捕捉因果关系。三种量算法规则减少了有条件独立的独特条件,其表层分解提供了与d分离的有趣的理论和实际优势。根据这一独特的规则,我们可以处理无法与DAGs(DAGs)代表的系统,例如循环系统和/或“纯洁”边缘系统。我们用当前文献工具来分析一个无法处理的知识范围的例子。我们用当前文献工具来分析。三个量计算数值的三次值规则将降低到一个有条件独立的独特条件,即表层分化规则,即表层分化为相对于d-sbild 的周期而言,我们也可以根据不断的变数来解释。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
因果推断,Causal Inference:The Mixtape
专知会员服务
104+阅读 · 2021年8月27日
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月5日
Arxiv
5+阅读 · 2020年12月10日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
因果推断,Causal Inference:The Mixtape
专知会员服务
104+阅读 · 2021年8月27日
专知会员服务
50+阅读 · 2021年8月8日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员