This paper presents an extension to global optimization beamforming for acoustic broadband sources. Given, that properties such as the source location, spatial shape, multipole rotation, or flow properties can be parameterized over the frequency, a CSM-fitting can be performed for all frequencies at the same time. A numerical analysis shows that the non-linear error function for the standard global optimization problem is similar to a Point Spread Function and contains local minima, but can be improved with the proposed broadband optimization. Not only increases the broadband optimization process the ratio of equations to unknown variables, but it also smooths out the cost function. It also simplifies the process of identifying sources and reconstructing their spectra from the results. The paper shows that the method is superior on synthetic monopoles compared to standard global optimization and CLEAN-SC. For real-world data the results of broadband global optimization, standard global optimization, and CLEAN-SC are similar. However, the proposed method does not require the identification and integration of Regions Of Interest. It is shown, that by using reasonable initial values the global optimization problem reduces to a local optimization problem with similar results. Further, it is shown that the proposed method is able to identify multipoles with different pole amplitudes and unknown pole rotations.


翻译:本文展示了声频宽带源全球优化波束的延伸。 鉴于源位置、空间形状、多极旋转或流性等属性可以对频率进行参数化, 能够同时对所有频率进行 CSM 配置。 数字分析显示, 标准全球优化问题的非线性错误功能类似于点扩展函数, 包含本地微型功能, 但可以通过拟议的宽带优化加以改进。 不仅提高宽带优化进程方程式与未知变量的比例, 而且还可以平滑成本功能。 它还简化了源的识别进程, 并从结果中重建光谱。 该文件显示, 合成单极相对于标准全球优化和 CLEAN- SC 而言, 该方法优于合成单极。 对于真实世界的数据来说, 宽带全球优化、 标准全球优化和 CLEAN- SC 的结果类似。 但是, 拟议的方法并不要求确定和整合感兴趣的区域。 显示, 通过使用合理的初始值, 全球优化问题会降低到本地优化问题, 从结果中重建光谱。 进一步显示, 合成单极能 显示, 和多极 显示, 显示, 拟议的方法能够向不同的极 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员