Remote sensing scene classification deals with the problem of classifying land use/cover of a region from images. To predict the development and socioeconomic structures of cities, the status of land use in regions is tracked by the national mapping agencies of countries. Many of these agencies use land-use types that are arranged in multiple levels. In this paper, we examined the efficiency of a hierarchically designed Convolutional Neural Network (CNN) based framework that is suitable for such arrangements. We use the NWPU-RESISC45 dataset for our experiments and arranged this data set in a two-level nested hierarchy. Each node in the designed hierarchy is trained using DenseNet-121 architectures. We provide detailed empirical analysis to compare the performances of this hierarchical scheme and its non-hierarchical counterpart, together with the individual model performances. We also evaluated the performance of the hierarchical structure statistically to validate the presented empirical results. The results of our experiments show that although individual classifiers for different sub-categories in the hierarchical scheme perform considerably well, the accumulation of the classification errors in the cascaded structure prevents its classification performance from exceeding that of the non-hierarchical deep model
翻译:为了预测城市的发展和社会经济结构,各国的国家测绘机构对各地区的土地利用状况进行跟踪,其中许多机构使用多层次安排的土地利用类型;在本文件中,我们审查了以等级划分的适合此类安排的革命神经网络(CNN)框架的效率。我们用NWPU-RESISC45数据集进行实验,并将这一数据集安排在两层嵌套的等级结构中。设计等级结构中的每一个节点都利用DenseNet-121结构进行了培训。我们提供了详细的实证分析,以比较这一等级制度及其非等级对应机制的绩效以及个别模型绩效。我们还从统计角度评估了等级结构的绩效,以验证所提出的实证结果。我们的实验结果表明,尽管等级体系中不同子类别的个体分类人员表现得相当出色,但级结构中分类错误的积累使得其分类性业绩无法超过非等级式深层模型的绩效。