Robustness to transformation is desirable in many computer vision tasks, given that input data often exhibits pose variance. While translation invariance and equivariance is a documented phenomenon of CNNs, sensitivity to other transformations is typically encouraged through data augmentation. We investigate the modulation of complex valued convolutional weights with learned Gabor filters to enable orientation robustness. The resulting network can generate orientation dependent features free of interpolation with a single set of learnable rotation-governing parameters. By choosing to either retain or pool orientation channels, the choice of equivariance versus invariance can be directly controlled. Moreover, we introduce rotational weight-tying through a proposed cyclic Gabor convolution, further enabling generalisation over rotations. We combine these innovations into Learnable Gabor Convolutional Networks (LGCNs), that are parameter-efficient and offer increased model complexity. We demonstrate their rotation invariance and equivariance on MNIST, BSD and a dataset of simulated and real astronomical images of Galactic cirri.
翻译:由于输入数据往往显示出差异,因此,许多计算机的视觉任务需要强力转换,因为输入数据往往显示差异。尽管翻译差异和差异是CNN记录的现象,但通常通过数据增强来鼓励对其他变异的敏感度。我们调查复杂的有价值变异权重的调节,并用有学识的加博过滤器来调整方向的稳健性。由此形成的网络可以产生取向依赖性特征,而无需通过一套单一的可学习旋转管理参数进行内插。通过选择保留或集合定向通道,可以直接控制等同与变异的选择。此外,我们通过拟议的周期性加博变异,我们采用旋转性变异性,以进一步促成对旋转的概括化。我们将这些创新合并到可学习的加博变变变网络(LGCNs)中,这是具有参数效率的,提供了更高的模型复杂性。我们展示了这些变异性和对MNIST、BSD以及模拟和真实的加热度天文图像的变异性。