The estimation of heterogeneous treatment effects in the potential outcome setting is biased when there exists model misspecification or unobserved confounding. As these biases are unobservable, what model to use when remains a critical open question. In this paper, we propose a novel Bayesian methodology to mitigate misspecification and improve estimation via a synthesis of multiple causal estimates, which we call Bayesian causal synthesis. Our development is built upon identifying a synthesis function that correctly specifies the heterogeneous treatment effect under no unobserved confounding, and achieves the irreducible bias under unobserved confounding. We show that our proposed method results in consistent estimates of the heterogeneous treatment effect; either with no bias or with irreducible bias. We provide a computational algorithm for fast posterior sampling. Several benchmark simulations and an empirical study highlight the efficacy of the proposed approach compared to existing methodologies, providing improved point and density estimation of the heterogeneous treatment effect, even under unobserved confounding.
翻译:暂无翻译