Blind face restoration (BFR) from severely degraded face images in the wild is a very challenging problem. Due to the high illness of the problem and the complex unknown degradation, directly training a deep neural network (DNN) usually cannot lead to acceptable results. Existing generative adversarial network (GAN) based methods can produce better results but tend to generate over-smoothed restorations. In this work, we propose a new method by first learning a GAN for high-quality face image generation and embedding it into a U-shaped DNN as a prior decoder, then fine-tuning the GAN prior embedded DNN with a set of synthesized low-quality face images. The GAN blocks are designed to ensure that the latent code and noise input to the GAN can be respectively generated from the deep and shallow features of the DNN, controlling the global face structure, local face details and background of the reconstructed image. The proposed GAN prior embedded network (GPEN) is easy-to-implement, and it can generate visually photo-realistic results. Our experiments demonstrated that the proposed GPEN achieves significantly superior results to state-of-the-art BFR methods both quantitatively and qualitatively, especially for the restoration of severely degraded face images in the wild. The source code and models can be found at https://github.com/yangxy/GPEN.


翻译:从野外严重退化的面部图像中恢复盲人脸部是一个非常棘手的问题。由于问题高发和复杂的不为人知的退化,直接培训深神经网络通常不能产生可接受的结果。基于基因对抗网络的现有方法可以产生更好的结果,但往往产生过度移动的恢复。在这项工作中,我们提出一种新的方法,首先学习用于高质量面部图像生成的GANGAN,然后将其嵌入U型DNN,作为前一个解码器,然后对GAN先前嵌入的DNN进行微调,并配有一套综合的低质量面部图像。GAN区块的设计旨在确保GAN的潜在代码和噪音输入可以分别来自DNN的深度和浅度特征,控制全球面部结构、当地面貌细节以及重建图像的背景。拟议的GAN先前嵌入的网络(GPEN)很容易被接受,并且可以产生视觉的摄影-现实结果。我们的实验显示,GANNEO(GEN)将高得多的面部图像和GNEVA-G-G-G-G-G-ral-deal-restal-ral-roups 都能找到高度的定量和高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/高度/低度/高度/低度/低度/高度/低度/低度/低度/低度/低度/低度/低度/低度/制解制解制制制制制制制制成方法可以找到的制成方法。

0
下载
关闭预览

相关内容

GAN:生成性对抗网,深度学习模型的一种,在神经网络模型中引入竞争机制,非常流行。
专知会员服务
45+阅读 · 2021年4月24日
【CVPR2021】GAN人脸预训练模型
专知会员服务
23+阅读 · 2021年4月10日
【干货书】机器学习速查手册,135页pdf
专知会员服务
121+阅读 · 2020年11月20日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
3+阅读 · 2020年7月16日
Arxiv
4+阅读 · 2018年5月21日
Arxiv
8+阅读 · 2018年5月1日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Top
微信扫码咨询专知VIP会员