In this paper it is shown that $C_\beta$-smooth functions can be approximated by deep neural networks with ReLU activation function and with parameters $\{0,\pm \frac{1}{2}, \pm 1, 2\}$. The $l_0$ and $l_1$ parameter norms of considered networks are thus equivalent. The depth, width and the number of active parameters of the constructed networks have, up to a logarithmic factor, the same dependence on the approximation error as the networks with parameters in $[-1,1]$. In particular, this means that the nonparametric regression estimation with the constructed networks attains the same convergence rate as with sparse networks with parameters in $[-1,1]$.


翻译:本文显示,具有RELU激活功能的深神经网络和参数为 $0,\pm\frac{1 ⁇ 2}、\ pm 1, 2 ⁇ 2}的参数可以近似于 $C ⁇ beta$-smoth 函数。因此,考虑的网络的参数规范是等同的。所建网络的深度、宽度和有效参数数量,在对数系数上,对近似误差的依赖程度与以 $[1,1,1]为参数的网络相同。这特别意味着,对已建网络的非参数回归估计达到与以 $[1,1,1]为参数的稀少网络相同的趋同率。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
50+阅读 · 2020年12月14日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
7+阅读 · 2021年7月5日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Graph Neural Networks 综述
计算机视觉life
30+阅读 · 2019年8月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年10月11日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员