Rapid visualization of large-scale spatial vector data is a long-standing challenge in Geographic Information Science. In existing methods, the computation overheads grow rapidly with data volumes, leading to the incapability of providing real-time visualization for large-scale spatial vector data, even with parallel acceleration technologies. To fill the gap, we present HiVision, a display-driven visualization model for large-scale spatial vector data. Different from traditional data-driven methods, the computing units in HiVision are pixels rather than spatial objects to achieve real-time performance, and efficient spatial-index-based strategies are introduced to estimate the topological relationships between pixels and spatial objects. HiVision can maintain exceedingly good performance regardless of the data volume due to the stable pixel number for display. In addition, an optimized parallel computing architecture is proposed in HiVision to ensure the ability of real-time visualization. Experiments show that our approach outperforms traditional methods in rendering speed and visual effects while dealing with large-scale spatial vector data, and can provide interactive visualization of datasets with billion-scale points/segments/edges in real-time with flexible rendering styles. The HiVision code is open-sourced at https://github.com/MemoryMmy/HiVision with an online demonstration.


翻译:大型空间矢量数据的快速可视化是地理信息科学的一个长期挑战。在现有的方法中,计算间接费用的速度随着数据量而迅速增长,导致无法为大型空间矢量数据提供实时可视化,即使平行加速技术也是如此。为了填补这一空白,我们介绍了大型空间矢量数据的显示驱动可视化模型HiVision。与传统的数据驱动方法不同,HiVision中的计算单位是像素,而不是空间物体,以实现实时性能,并引入高效的空间指数战略来估计像素和空间天体之间的表层关系。HiVision可以保持极好的性能,而不管由于显示的像素数量稳定,数据量如何。此外,在HiVision中提出了最佳的平行计算结构,以确保实时可视化的能力。实验表明,我们的方法在与大型空间矢量数据打交道时,超越了显示速度和视觉效果的传统方法,并且可以提供以10亿尺度点/结构为基础的空间指数和空间天体空间天体/空间天体为基础的数据设置互动可视化。在真实的Visalimalimal-imalimal-livolimental-slimatial-slimaslistial-destrislimaside-stime-stistrismexstial-impal

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
109+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
109+阅读 · 2020年3月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
179+阅读 · 2020年2月1日
【大规模数据系统,552页ppt】Large-scale Data Systems
专知会员服务
60+阅读 · 2019年12月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员