Traffic prediction plays an essential role in intelligent transportation system. Accurate traffic prediction can assist route planing, guide vehicle dispatching, and mitigate traffic congestion. This problem is challenging due to the complicated and dynamic spatio-temporal dependencies between different regions in the road network. Recently, a significant amount of research efforts have been devoted to this area, especially deep learning method, greatly advancing traffic prediction abilities. The purpose of this paper is to provide a comprehensive survey on deep learning-based approaches in traffic prediction from multiple perspectives. Specifically, we first summarize the existing traffic prediction methods, and give a taxonomy. Second, we list the state-of-the-art approaches in different traffic prediction applications. Third, we comprehensively collect and organize widely used public datasets in the existing literature to facilitate other researchers. Furthermore, we give an evaluation and analysis by conducting extensive experiments to compare the performance of different methods on a real-world public dataset. Finally, we discuss open challenges in this field.
翻译:交通流量预测在智能交通系统中起着关键作用。准确的交通预测可以帮助路线规划、引导车辆调度和缓解交通拥堵。由于公路网络不同区域之间复杂和动态的时空依赖性,这一问题具有挑战性。最近,对这一领域进行了大量研究,特别是深层学习方法,大大提高了交通预测能力。本文件的目的是从多种角度对基于深层学习的交通预测方法进行全面调查。具体地说,我们首先总结现有的交通预测方法,并进行分类。第二,我们列举了不同交通预测应用中的最新方法。第三,我们全面收集和组织现有文献中广泛使用的公共数据集,以便利其他研究人员。此外,我们通过进行广泛的实验,对现实世界公共数据集中不同方法的绩效进行比较,从而进行评估和分析。最后,我们讨论了该领域的公开挑战。