Numerous task-specific variants of conditional generative adversarial networks have been developed for image completion. Yet, a serious limitation remains that all existing algorithms tend to fail when handling large-scale missing regions. To overcome this challenge, we propose a generic new approach that bridges the gap between image-conditional and recent modulated unconditional generative architectures via co-modulation of both conditional and stochastic style representations. Also, due to the lack of good quantitative metrics for image completion, we propose the new Paired/Unpaired Inception Discriminative Score (P-IDS/U-IDS), which robustly measures the perceptual fidelity of inpainted images compared to real images via linear separability in a feature space. Experiments demonstrate superior performance in terms of both quality and diversity over state-of-the-art methods in free-form image completion and easy generalization to image-to-image translation. Code is available at https://github.com/zsyzzsoft/co-mod-gan.
翻译:然而,一个严重的限制因素是,所有现有的算法在处理大规模缺失区域时往往都失败。为了克服这一挑战,我们提议采用通用的新办法,通过对有条件和随机风格的表示方式进行共同调整,弥合图像有条件和最新调整的无条件基因结构之间的差距。此外,由于缺乏完成图像所需的良好的量化指标,我们提议采用新的Paired/Unpaired Invidition Discriminal Scord(P-IDS/U-IDS),该办法通过地物空间的线性分离,强有力地测量成像图像相对于真实图像的表面真实真实真实真实真实真实真实真实的真实性。实验显示,在自由成像完成中,在质量和多样性方面优于最先进的方法,在自由成像图像完成和图像到图像翻译方面易于普及。代码可在 https://github.com/zsyzzsoft/co-mod-gan查阅。