Upper limb movement classification, which maps input signals to the target activities, is one of the crucial areas in the control of rehabilitative robotics. Classifiers are trained for the rehabilitative system to comprehend the desires of the patient whose upper limbs do not function properly. Electromyography (EMG) signals and Electroencephalography (EEG) signals are used widely for upper limb movement classification. By analysing the classification results of the real-time EEG and EMG signals, the system can understand the intention of the user and predict the events that one would like to carry out. Accordingly, it will provide external help to the user to assist one to perform the activities. However, not all users process effective EEG and EMG signals due to the noisy environment. The noise in the real-time data collection process contaminates the effectiveness of the data. Moreover, not all patients process strong EMG signals due to muscle damage and neuromuscular disorder. To address these issues, we would like to propose a novel decision-level multisensor fusion technique. In short, the system will integrate EEG signals with EMG signals, retrieve effective information from both sources to understand and predict the desire of the user, and thus provide assistance. By testing out the proposed technique on a publicly available WAY-EEG-GAL dataset, which contains EEG and EMG signals that were recorded simultaneously, we manage to conclude the feasibility and effectiveness of the novel system.
翻译:对目标活动进行输入信号的上肢运动分类是控制康复机器人的关键领域之一,对分类者进行康复系统培训,以了解上肢不能正常发挥作用的病人的愿望。电感学(EMG)信号和电脑物理学(EEEG)信号被广泛用于上肢运动分类。通过分析实时EEEG和EG信号的分类结果,该系统可以理解用户的意图,并预测人们想执行的事件。因此,该系统将为用户提供外部帮助,帮助他们进行活动。然而,并非所有用户都处理由于环境紧张而有效的EEEG和EG信号。实时数据收集过程中的噪音会同时影响数据的有效性。此外,并非所有患者都处理由于肌肉损伤和神经肌肉障碍而强烈的EGM信号。为了解决这些问题,我们想提出一种新的决策级多感官融合技术。简而言之,该系统将EG的信号与EG信号结合起来,从两个来源中检索有效的EG和EG信号,从而能够理解和预测EGA的公开信号。我们用什么方式测试了EGA系统。