Establishing robust and accurate correspondences between a pair of images is a long-standing computer vision problem with numerous applications. While classically dominated by sparse methods, emerging dense approaches offer a compelling alternative paradigm that avoids the keypoint detection step. However, dense flow estimation is often inaccurate in the case of large displacements, occlusions, or homogeneous regions. In order to apply dense methods to real-world applications, such as pose estimation, image manipulation, or 3D reconstruction, it is therefore crucial to estimate the confidence of the predicted matches. We propose the Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences along with a reliable confidence map. We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty. In particular, we parametrize the predictive distribution as a constrained mixture model, ensuring better modelling of both accurate flow predictions and outliers. Moreover, we develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction in the context of self-supervised training. Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets. We further validate the usefulness of our probabilistic confidence estimation for the tasks of pose estimation, 3D reconstruction, image-based localization, and image retrieval. Code and models are available at https://github.com/PruneTruong/DenseMatching.


翻译:在一对图像之间建立稳健和准确的对应关系是一个长期存在的计算机视觉问题,有许多应用。虽然典型地以稀少的方法为主,但新兴的密集方法提供了令人信服的替代范式,避免了关键点检测步骤。然而,在大规模迁移、隔离或同质区域的情况下,密集流量估计往往不准确。为了对现实世界应用应用采用密集方法,例如进行估算、图像操纵或3D重建,因此,对预测匹配的信心进行估计至关重要。我们提议了强化的稳妥度对称网络(PDC-Net+),能够与可靠的信任地图一起估算准确密度对应。我们开发了灵活的预测性方法,共同学习流量预测及其不确定性。特别是,我们把预测性分布作为制约性的混合模型,确保更好地模拟准确的流量预测和外部重建。此外,我们开发了一种结构和强化的培训战略,专门用于在自我校正的培训背景下进行稳健和可普遍接受的不确定性预测。我们的方法获得了在多度、具有挑战性、具有挑战性、具有挑战性、具有挑战性、可比较性、可比较性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可追溯性、可推、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行、可进行的、可进行的

0
下载
关闭预览

相关内容

专知会员服务
29+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员