We offer a method to estimate a covariance matrix in the special case that \textit{both} the covariance matrix and the precision matrix are sparse --- a constraint we call double sparsity. The estimation method is maximum likelihood, subject to the double sparsity constraint. In our method, only a particular class of sparsity pattern is allowed: both the matrix and its inverse must be subordinate to the same chordal graph. Compared to a naive enforcement of double sparsity, our chordal graph approach exploits a special algebraic local inverse formula. This local inverse property makes computations that would usually involve an inverse (of either precision matrix or covariance matrix) much faster. In the context of estimation of covariance matrices, our proposal appears to be the first to find such special pairs of covariance and precision matrices.


翻译:我们提供了一种方法来估计特殊情况下的共变矩阵和精确矩阵的共变矩阵是稀疏的 -- -- 一种我们称之为双宽度的制约。估计方法是最大可能性的,但受双宽度限制的限制。在我们的方法中,只允许特定种类的聚变模式:矩阵及其反向必须从属于同一相色图。与双宽度的天真的执行相比,我们的相色图方法利用了特殊的当地代数反方。这种地方反向属性使得计算通常涉及反(精确矩阵或共变矩阵)的更快。在估计共变矩阵时,我们的提议似乎是第一个发现这种特殊相色的共变和精确矩阵。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2021年4月2日
专知会员服务
43+阅读 · 2021年3月8日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
大数据的分布式算法
待字闺中
3+阅读 · 2017年6月13日
Top
微信扫码咨询专知VIP会员