This paper approaches the unsupervised learning problem by gradient descent in the space of probability density functions. Our main result shows that along the gradient flow induced by a distribution-dependent ordinary differential equation (ODE), the unknown data distribution emerges as the long-time limit of this flow of densities. That is, one can uncover the data distribution by simulating the distribution-dependent ODE. Intriguingly, we find that the simulation of the ODE is equivalent to the training of generative adversarial networks (GANs). The GAN framework, by definition a non-cooperative game between a generator and a discriminator, can therefore be viewed alternatively as a cooperative game between a navigator and a calibrator (in collaboration to simulate the ODE). At the theoretic level, this new perspective simplifies the analysis of GANs and gives new insight into their performance. To construct a solution to the distribution-dependent ODE, we first show that the associated nonlinear Fokker-Planck equation has a unique weak solution, using the Crandall-Liggett theorem for differential equations in Banach spaces. From this solution to the Fokker-Planck equation, we construct a unique solution to the ODE, relying on Trevisan's superposition principle. The convergence of the induced gradient flow to the data distribution is obtained by analyzing the Fokker-Planck equation.


翻译:本文通过概率密度函数空间的梯度下降处理不受监督的学习问题。 我们的主要结果表明, 在基于分布的普通差分方程( ODE) 引发的梯度流中, 未知的数据分布作为密度流的长期极限出现。 也就是说, 可以通过模拟基于分布的 ODE 来发现数据分布。 有趣的是, 我们发现对 ODE 的模拟相当于对基因对抗网络( GANs) 的培训。 因此, GAN 框架, 通过定义发电机与歧视者之间不合作的游戏, 可以被看作导航器与校准器( 模拟 ODE ) 之间的合作游戏。 在理论层面上, 这个新视角可以简化对基于分布的 ODE 的分析, 并给其表现带来新的洞察。 为了构建一个依赖分布的 ODE 的解决方案, 我们首先显示, 相关的非线性对抗网络( Gokker- Planck) 等方程式具有独特的弱点, 使用 Crandall- Liggget 论调方程式在Banach 方程式中进行差异式方程式的校准( 模拟Oral) 原则, 从这个解决方案到FROdal- developal- tral 的模型, 从这个解决方案, 的模型流流流到一个独特的模型到一个独特的解决方案到一个独特的的模型, 的滚化的模型, 从这个解决方案, 的模型的模型的滚式的模型到一个特殊的模型的模型的模型的模型的模型的模型的模型。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年6月27日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员