Bi-stochastic normalization of kernelized graph affinity matrix provides an alternative normalization scheme for graph Laplacian methods in graph-based data analysis and can be computed efficiently by Sinkhorn-Knopp (SK) iterations in practice. This paper proves the convergence of the bi-stochastically normalized graph Laplacian to manifold (weighted-)Laplacian with rates when $n$ data points are i.i.d. sampled from a general $d$-dimensional manifold embedded in a possibly high-dimensional space. Under certain joint limit of $n \to \infty$ and kernel bandwidth $\epsilon \to 0$, the point-wise convergence rate of the graph Laplacian operator (under 2-norm) is proved to be $ O( n^{-1/(d/2+3)})$ at finite large $n$ up to log factors, achieved at the scaling of $\epsilon \sim n^{-1/(d/2+3)} $. When the manifold data are corrupted by outlier noise, we theoretically prove the graph Laplacian point-wise consistency which matches the rate for clean manifold data up to an additional error term proportional to the boundedness of mutual inner-products of the noise vectors. Our analysis suggests that, under the setting being considered in this paper, not exact bi-stochastic normalization but an approximate one will achieve the same consistency rate. Motivated by the analysis, we propose an approximate and constrained matrix scaling problem that can be solved by SK iterations with early termination, and apply to simulated manifold data both clean and with outlier noise. Numerical experiments support our theoretical results and show the robustness of bi-stochastically normalized graph Laplacian to outlier noise.


翻译:内核图形的双层正统化图的亲近性矩阵为基于图形的数据分析中的平面平面图的平面方法提供了一个替代的正常化方案, 并且可以通过Sinkhorn- Knopp (SK) 的迭代来有效计算。 本文证明了双层平面平面平面图 Laplacian 与多重( 加权) 拉平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面数据平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面,平面平面平面,平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面,平面平面平面,平面平面平面平面平面平面,平面平面平面平面,平面平面,平面平面平面平面,平面平面平面,平面平面平面平面,平面平面平面平面平面,平面平面平面平面,平面平面平面平面平面平面,平面平面平面,平面平面平面平面平面平面平面,平面平面平面平面平面平面,平面,平面平面平面平面,平面平面平面平

0
下载
关闭预览

相关内容

VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Arxiv
0+阅读 · 2022年8月10日
Arxiv
15+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员